

The March of Technology in SRS

"A single high dose of radiation, stereotactically directed to an intra-cranial region of interest. May be from X-ray, gamma ray, protons or heavy particles." - Lars Leksell, 1951

"It is clear, however, that the radiation in the 200 kilovolt range used here should be replaced by radiation of higher energy. This would give better depth dose, especially with the extremely small fields used here, and also a better definition of the beam."

L Leksell, The stereotaxic method and radiosurgery of the brain, Acta Chir Scand. 13;102(4):316-9, 1951.

21 portals, each with a skin dose of 900 R Total dose to target area 1,650 R 6 mm aperture 74 minute Tx time Pain began to subside after ~2 weeks Pain free for 18 years

L Leksell, Stereotaxic radiosurgery in Trigeminal Neuralgia, Acta Chir Scand. 137:311-314, 1971.

Assemble the Guidance Documents

TG 42 – Stereotactic Radiosurgery

- TG 76 Management of Motion in Radiation Oncology
- TG 68 Intracranial Stereotactic Positioning Systems
- TG 101 Stereotactic Body Radiotherapy
- TG 104 kV Localization in Therapy
- TG 135 QA for Robotic Radiosurgery
- TG 142 QA of Medical Linear Accelerators

TG 147 – QA for Non-Radiographic Radiotherapy Localization and Positioning Systems

TG 176 – Task Group on Dosimetric Effects of Immobilization Devices

TG 178 – Gamma Stereotactic Radiosurgery Dosimetry and QA

TG 179 – QA for Image-Guided Radiation Therapy Utilizing CT-Based Technologies ASTRO SRS/SBRT Quality and Safety White Paper

ACR/ASTRO Standards

Efforts In Progress (?)

TG 117 - Use of MRI in Treatment Planning and Stereotactic Procedures

TG 132 – Use of Image Registration and Data Fusion Algorithms and Techniques in Radiotherapy Treatment Planning

TG 155 - Small Fields / Non-Equilibrium Condition Photon Beam Dosimetry

Recommendation	Duration or Frequency	Reference
Establish clinical program goals, specify disease sites, identify program specialists, develop guidelines for treatment, follow-up and assessment.	CLINICAL GOALS	33-34, 36
Identify required resources: expertise, personnel, technology, time.	Initially, and for each new technology and/or disease site	32-33
Perform technology assessment commensurate with clinical goals, identify equipment and processes for simulation, immobilization, image guidance, management of organ motion, treatment delivery.	APPROPRIATE TECHNOLOGY	32-33
Perform assessment of staffing levels, develop processes for initial and ongoing training of all program staff.	Initially, and for each new technology and/or disease site	32-35
Develop and use checklists for all aspects of SRS/SBRT processes.	Initially, and for each new technology and/or disease site	34-36
Provide documentation for a culture and environment fostering clear and open communication.	SAFETY CULTURE	32
Develop quality assurance processes that encompass all clinical and technical SBRT program aspects, clearly following available guidance, with regard to procedures and tolerances.	Initially, and for each new technology and/or disease site	32-36, 43
Conduct clinical SBRT patient conferences for pre-treatment planning and post-treatment review.	Ongoing	
Develop processes for documentation and reporting, peer review, regular review of processes and procedures, updating clinical guidelines and recommendations, ongoing needs assessment, and continuous guality improvement.	PEER REVIEW, CONTINUOUS QUALITY IMPROVEMENT	32-35

SRS/SBRT as a well thought out program, not an addition/afterthought

Recom	mendation	Duration or Frequency	Reference
All personnel must demonstrate initial attainm respective discipline through graduation from certification and licensure as appropriate.	ent of knowledge and competence in their an approved educational program, board	Initially	32-33
All personnel must receive vendor provided eq SBRT program.	uipment -specific training prior to involvement in an	16 hours per staff member	32, 34
All personnel must receive disease-site-specific program.	: training prior to involvement in a stereotactic	16 hours per staff member	32, 34
All personnel must maintain their skills by lifelo development. For physicians and physicists thi	ong learning through continuing professional s is the ABR Maintenance of Certification process.	Ongoing	32, 34-35
There must be adequate resources in place to r sufficient staff. Staff must have sufficient time t pressure.	neet the demands of the stereotactic program with o carry out the necessary tasks without undue	Ongoing	32-33, 37, 39
Job description and list of responsibilities shou program individuals.	Initially	32-33	
Non-radiation oncology specialists can sometir for SBRT, given a deep fund of knowledge in th specialists include neurosurgeons, pulmonolog	mes lend expertise in the area of target delineation e anatomy of various body sites. Examples of such gists, hepatologists, and oncologic surgeons.		
SRS/SBRT specific trai	ning		
SRS/SBRT expertise/co	ompetence, including personr	nel certification	
Adequate resources	ABR ALL ALL ALL ALL ALL ALL ALL ALL ALL AL		
	Board Certification is a Minin	num Qualification	

Recommendation	Duration	Reference
Appropriate resources, specialized equipment, personnel, time, must be evaluated and available prior to initiation of acceptance and commissioning processes and procedures.	8-16 weeks	32-33
Independent assessment of measured beam data should be performed prior to initiating a clinical SBRT program.	1 week	
Independent verification of absolute calibration should be performed prior to initiating a clinical stereotactic program.	<1 week	
Comprehensive treatment planning system commissioning incorporating a full range of stereotactic delivery parameters and techniques, and specifically addressing use of inhomogeneity corrections with specific dose algorithm(s), must be performed prior to initiating a clinical stereotactic program.	4-8 weeks	33
Independent verification of system commissioning, utilizing appropriate specialized phantoms such as those from the Radiological Physics Center, should be performed prior to initiating a clinical stereotactic program and prior to initiating new clinical sites and/or treatment techniques.	2-4 weeks	
Thorough commissioning of simulation devices and processes, including 4D CT if used, must be performed prior to initiating a clinical stereotactic program.	2-4 weeks	33
Management of respiratory motion is an essential element of SBRT simulation, planning and delivery. Measures must be developed to ensure effective and safe operation of these technologies.	2-4 weeks	33-34, 40
Evaluation of individual and end-to-end localization capabilities of the image guidance system must be performed prior to initiating a clinical stereotactic program and prior to initiating new clinical sites and/or treatment techniques.	2 weeks	33-34
End-to-end commissioning procedures, incorporating simulation, treatment planning and dosimetry, image guidance, management of motion, and treatment management systems, must be performed prior to initiating a clinical stereotactic program and prior to initiating new clinical sites and/or treatment techniques. In addition, users may find it useful to deliberately introduce known errors, and evaluate the capabilities of the system and processes in detecting such errors.	2 weeks	33

Recommendation	Reference
The course of treatment, including dose schedule, normal tissue constraints, CTV/ITV and PTV margins, should follow established national guidelines, with careful consideration of the setup accuracy of the particular system in place at the given institution. Examples of dose constraints used at one institution are provided Reference 61.	33-34, 63
Ireatment protocols that spell out responsibilities and detailed procedures ,must be available for all personnel, including therapists, medical physicists and radiation oncologists.	
One or more comprehensive checklists should be used to guide all aspects of the treatment process. Examples of checklists used at several institutions are provided in Appendix 2 and 3. Note: these checklists intended to serve as a template, and should not be adopted in whole or in part. They are institution and technology specific are meant solely for illustration.	34-36
Appropriate program team members, including radiation oncologist(s), medical physicist(s) and radiation therapist(s) must be present as described by their responsibilities during the various aspects of the treatment process.	33-34
All imaging for anatomical definition / contouring purposes should be performed with the patient in the treatment position, and if possible, in the immobilization device to be used for treatment.	33
Patient-specific pre-treatment QA is considered necessary for a safe SBRT program. Prior to initiating treatment for each and every patient, the institution must verify that there is adequate information available to ensure that the process is correct. The QA methods used must verify the integrity of the data transfer from the treatment planning system to the treatment management system and the accuracy of the dose to be delivered.	33
Extra verification steps must be taken in cases where a laterality or adjacency errors could be made. This would include, for example, radiosurgery for trigeminal neuralgia, thalamotomy and pallidotomy, and spine SBRT.	
An independent review of all planning, setup and treatment parameters must be performed prior to initiating treatment.	
A radiation oncologist should be present at the treatment unit before irradiation to confirm localization based on reference images and review and approve the results of image guidance procedures prior to each treatment. A medical physicist must be present at the treatment unit before and during imaging, and through the entirety of each treatment to ensure that all issues of patient position, proper machine settings, and any technical issues of treatment delivery are safely and correctly applied. Procedures for image review and setup correction must be readily available for all personnel.	32-34
All images, corrections, and treatment parameters must be saved and available for subsequent review. If such information is not captured by the treatment machine / treatment management system, then it must be recorded manually.	32

Г

Procedure	Performed
Aildate target construction, appropriateness of planning directives and normal tissue toxicity risks, establish immobilization, areathing management and image guidance strategy, validate plan and monitor units, ensure adequate image and structure information is provided to support localization method	Prior to first fraction
Alidate initial setup instructions, check script against downloaded plan, ensure sufficient documentation, check validity of monitor units, supervise/assist patient positioning, verify delivery of treatment on site	At first fraction
Theck validity of script and setup, assist in image guided localization, ensure adequately trained personnel familiar with the ndividual treatment are present to perform irradiation	Prior to each fraction

Compare beam data with appropriate references												
(Dutput	Factors	s for M	ILC								
Nov	valis Tx,	6X, HD-:	120 MLC	2								
	Institution 2	-			Ja	w Field Size	e [mm]					
		7	12	22	32	42	60	80	100	140	220	254
	5	0.591	0.614	0.619	0.619	0.623	0.626	0.625	0.629	0.631	0.636	0.639
E	10	0.621	0.716	0.727	0.728	0.730	0.733	0.733	0.735	0.738	0.743	0.746
E	20	0.621	0.735	0.754	0.834	0.815	0.857	0.861	0.861	0.865	0.029	0.871
ze	40	0.621	0.735	0.000	0.834	0.869	0.886	0.894	0.898	0.000	0.070	0.909
S	60	0.621	0.735	0.800	0.834	0.872	0.923	0.936	0.947	0.954	0.961	0.962
eq	80	0.621	0.735	0.800	0.834	0.872	0.923	0.966	0.980	0.991	1.000	1 002
ii.	100	0.621	0.735	0.800	0.834	0.872	0.923	0.966	1.000	1.018	1.027	1.029
2	140	0.621	0.735	0.800	0.834	0.872	0.923	0.966	1.000	1.052	1.069	1.071
Σ	220	0.621	0.735	0.800	0.834	0.872	0.923	0.966	1.000	1.052	1.110	1.116
	254	0.621	0.735	0.800	0.834	0.872	0.923	0.966	1.000	1.052	1.110	1.122
Tru	eBeam S	Tx, 6X,	HD-120	MLC		Jaw Field	d Size Imm ²	1				
	9	8	12	22	32	42	60	80	1			
	5	0.5870	0.5962	0.5981	0.5985	0.5989	0.6005	0.601	Ř.			
	10	0.6723	0,7313	0.7393	0.7400	0.7400	0.7420	0.742				
	20	0 6719	0 7488	0 8015	0 8082	0 8110	0 8130	0.815				
2007	30	0.6719	0.7488	0.8082	0.8367	0.8447	0.8544	0.858	þ			
MLC	40	0 6719	0 7488	0 8082	0 8429	0 8690	0 8827	0.890	r			
Field	60	0.6719	0.7400	0 000	0 8420	0 8739	0 9221	0.936	i			
Size	80	0.6719	0 7488	0.8082	0 8420	0.8735	0 9226	0.965				
[mm	100	0.6719	0 7488	0 8082	0.8420	0.8735	0 9235	0.966				
	140	0.6719	0 7488	0.8082	0.8420	0.8735	0 9235	0.966				
	220	0.6719	0 7488	0.8082	0.8420	0.8735	0 9235	0.966				
	254	0.6719	0.7488	0.8082	0.8420	0.8735	0.9235	0.966				

	CT Slice Thickness (mm)	Measurement	BRW (mm)	CRW (mm)	Compass (mm)	Leksell (mm)
	1	Mean	1.9	1.8	1.2	1.7
		SD	1.0	1.1	0.6	1.0
		Min value	0.1	0.0	0.3	0.2
		Max value	5.0	4.9	3.2	4.9
		95% CI	3.6	3.6	2.2	3.4
	200	99.9% CI	5.0	5.2	3.1	4.8
	4	Mean	2.7	2.6	2.5	2.6
de la come		SD	1.3	1.5	1.2	1.4
		Min value	0.0	0.0	0.4	1.0
and the second se		Max value	7.0	7.1	6.4	7.2
N		95% CI	4.8	5.1	4.5	4.9
		99.9% CI	6.7	7.2	6.2	6.9
A COLORADO	8	Mean	6.6	6.6	5.1	5.4
		SD	3.1	3.0	2.3	2.4
		Min value	0.0	0.3	0.6	0.6
		Max value	11.2	12.0	10.9	10.2
		95% CI	16.2	15.0	12.2	9.4
		99.978 CI	10.2	13.9	12.2	12.0
	^a n = 13,50 tomography; S N/A, not ava Roberts-Wells;	0 independent acc D, standard deviat ailable; BRW, Brd ; CI, confidence in	curacy n ion; Mir own-Rob terval; A	neasuren n, minim eerts-We E, angul	nents <mark>.</mark> CT, c um; Max, m Ils; CRW, ation effect.	omputed aximum; Cosman-

BrainLAB ExacTrac 6D X-ray tubes recessed in floor Flat panels mounted to ceiling Accuray CyberKnife X-ray tubes mounted to ceiling Flat panels recessed in floor

				_	
QUALITY ASSURANCE OF IMMC SYSTEMS FOR FRAMELESS STEI HYPOFRACTIC Int. J. Radiation Oncology Biol. Phys., V TIMOTHY D. SOLBERG, PH.D.,* PAUL M. ME	DBILIZATION AND TAR REOTACTIC CRANIAL A ONATED RADIOTHERA fol. 71, No. 1, Supplement, DIN, PH.D.,* JOHN MULLINS,	GET LOCALI AND EXTRAC PY , pp. S131–S13 B.S.,' and Sico	ZATION TRANIAL 5, 2008 Ng Li, D.Sc.*	-	
	F	Results o	of Phanto	om Data	a
R. M.	(mm)	Lat	Long	Vert	3D vector
-	Average	-0.06	-0.01	0.05	1.11
	Standard Deviation	0.56	0.32	0.82	0.42
-		n = 50; 9	5% Confid	ence Lev	el +/- 0.12 mm

QA FOR RT SUPPLEMENT					
QUALITY ASSURANCE OF IMMOBI SYSTEMS FOR FRAMELESS STERE HYPOFRACTION Int. J. Radiation Oncology Biol, Phys., Vol. Timothy D. Solberg, Ph.D.,* Paul M. Medin	LIZATION AND TARG OTACTIC CRANIAL A ATED RADIOTHERAP 71, No. 1, Supplement, J , PH.D.,* JOHN MULLINS, E	ET LOCALIZ ND EXTRACE Y op. S131–S135, S.S., [†] and Sicone	ATION ANIAL 2008 3 Li, D.Sc.*		
	F	Results c	of Patien	t Data	
	(mm)	Lat	Long	Vert	3D vector
	Average	-0.09	0.13	0.23	1.02
	Standard Deviation	0.67	0.57	0.76	0.59

The Use of Cone Beam Computed Tomography for Image Guided Gamma Knife Stereotactic Radiosurgery: Initial Clinical Evaluation Winnie Li, MRT(T), MSC,*[†] Young-Bin Cho, PhD,*[†] Steve Ansell, BSC,* Normand Laperriere, MD,*^{+†} Cynthia Ménard, MD,*^{+†} Barbara-Ann Millar, MD,*^{+†} Gelareh Zadeh, MD, PhD,^{‡+8} Paul Kongkham, MD, PhD,[‡] Mark Bernstein, MD, MHSC,[‡] David A. Jaffray, PhD,*^{+†,1} and Caroline Chung, MD, MSC, CIP*^{+†} Int J Radiation Oncol Biol Phys, Vol. 96, No. 1, pp. 214-220, 2016 Mean \pm SD Variable 20 GK patients treated Setup error in a Leksell frame Translation (mm) LR -0.19 ± 0.32 AP 0.08 ± 0.29 CC -0.35 ± 0.50 **Difference between** Vector 0.40 ± 0.66 frame and CBCT Rotation (°) -0.14 ± 0.25 LR localization recorded AP -0.03 ± 0.19 0.10 ± 0.20 CC Intrafraction error Translation (mm) LR -0.03 ± 0.05 AP $-0.03\,\pm\,0.18$ CC -0.03 ± 0.12 Vector 0.05 ± 0.22 0 Rotation (°) LR -0.05 ± 0.30 -0.03 ± 0.20 AP CC -0.01 ± 0.09

	No. (%) of Participants						
	SRS Alone (n = 63)	SRS Plus WBRT (n = 48)	Mean Difference, % (95% CI)	P Value ^a	Among patients with 1-3		
Change from baseline ^b					brain metastases, the use		
HVLT-R					of SRS alone, compared		
Immediate recall					with CDC + M/DDT recultor		
Deterioration	5 (8.2)	14 (30.4)	22.2 (5.4.) 20.4)		with SRS + WBRT, resulted		
No deterioration	56 (91.8)	32 (69.6)	22.2 (5.4 to 39.1)	.004	in less cognitive		
Delayed recall					dotorioration at 2 months		
Deterioration	12 (19.7)	24 (51.1)	21 4 (12 1 + 50 7)		deterioration at 5 months		
No deterioration	49 (80.3)	23 (48.9)	31.4 (12.1 to 50.7)	<.001			
Recognition					In the absence of a		
Deterioration	14 (22.6)	19 (40.4)					
No deterioration	48 (77.4)	28 (59.6)	1/.8 (-1.5 to 3/.2)	.06	difference in overall		
TMT-A time to complete					survival, these findings		
Deterioration	10 (16.7)	14 (30.4)			august that fay notionts		
No deterioration	50 (83.3)	32 (69.6)	13.8 (-4.4 to 32.0)	13.8 (-4.4 to 32.0)	5) 13.8 (-4.4 to 32.0) .11	sugges	suggest that for patients
TMT-B time to complete					with 1-3 brain metastases		
Deterioration	11 (19.0)	16 (37.2)			amenable to radiosurgen		
No deterioration	47 (81.0)	27 (62.8)	18.2 (-1.4 to 37.9)	.07			
COWAT total					SRS alone may be a		
Deterioration	1 (1.9)	8 (18.6)			preferred strategy		
No deterioration	52 (98.1)	35 (81.4)	16.7 (2.4 to 31.0)	.01	preferred strategy		
GPS total seconds							
Deterioration	17 (29.3)	21 (47.7)	10.17.0.1.00.7				
No deterioration	41 (70.7)	23 (52.3)	18.4 (-2.4 to 39.3)	.07			
Outcome for cognitive progression at 3 mo							
Stable	23 (36.5)	4 (8.3)	20.2 (44.2 +- 12.2)	< 001			
Progression	40 (63.5)	44 (91.7)	-28.2 (-44.2 to -12.2)	<.001	Brown et al. 2016		

Radiosurgery of multipl dynamic conformal arcs							
Yimei Huang [*] , Karen Chin, Jared R. Robbins, Jinkoo Kim, Haisen Li, Hanan Amro, Indrin J. Chetty, James Gordon, Samuel Ryu							
6 patients with 3-5 metastases treated with single-isocenter dynamic conformal arcs							
5 120º arcs (±su minimize over	5 120° arcs (±sub-arcs as needed), adjusted as necessary to minimize overlapping multiple targets						
99% of each tar	get volume red	ceived 100% of the presc	ription dose				
Compared with multi-isocenter dynamic conformal arc (non- optimized, non-modulated) and with RapidArc (VMAT)							
Patient number	No. of lesions	Volume of each lesion (cm ³)	PTV _{total} (cm ³)				
1	3	0.40, 0.48, 0.65	1.53				
2	3	0.30, 0.44, 0.77	1.51				
3	4	0.32, 0.35, 0.50, 1.14	2.31				
4	4	0.34, 0.39, 0.66, 0.69	2.09				
5	5	0.52, 0.55, 0.59, 1.17, 2.75	5.58				
6	5	0.30, 0.37, 0.43, 0.49, 1.25	2.84				

Radiosurgery of multiple brain metastases with single-isocenter dynamic conformal arcs (SIDCA) Radiotherapy and Oncology 112 (2014) 128–132							
Yimei Huang *, Karen Chin, Jared R. Robbins, Jinkoo Kim, Haisen Li, Hanan Amro, Indrin J. Chetty, James Gordon, Samuel Ryu							
	SIDCA	MIDCA	VMAT				
RTOG CI	1.36 ± 0.07	1.32 ± 0.05	1.15 ± 0.08				
Paddick Cl	0.72 ± 0.04	0.75 ± 0.03	0.86 ± 0.05				
Gradient Index	3.97 ± 0.50	3.84 ± 0.44	4.34 ± 0.48				
Total MUs	16.113 ± 3304	15.613± 3867	8.027 ± 738				
Delivery Time (min)	29.5 ± 5.3	44.3 ± 10.8	15.3 ± 0.9				
V _{100%} (cm ³)	3.56 ± 1.98	3.63 ± 1.98	2.94 ± 1.57				
V _{50%} (cm ³)	13.58 ± 5.94	13.40 ± 5.80	12.24 ± 5.06				
$V_{10\%}^{30\%}$ (cm ³)	328.14 ± 209.35	260.32 ± 203.85	678.20 ± 419.94				
VMAT is more conformal than single or multiple dynamic arc plans							
Delivery time for SIDCA is better than MIDCA but not as fast as VMAT							
VMAT is much more MU efficient							
SIDCA / MIDCA have b	better "spillage" ch	aracteristics: Grac	dient Index and V10%				

Evan M. Thomas, PhD* (Richard A. Popple, PhD* H Xingen Wu, PhD* (Grant M. Clark, MD* (James M. Markert MD†	omparison of Plan Quality and Delivery Time etween Volumetric Arc Therapy (RapidArc) and amma Knife Radiosurgery for Multiple ranial Metastases <i>Neurosurgery 75:409–418, 2014</i>					
Barton L. Guthrie, MD‡ Yu Yuan, PhD*	TABLE 1. Case and Target Demographics					
Michael C. Dobelbower, MD, PhD* Sharon A. Spencer, MD*	Cases/total targets treated	28/112				
John B. Fiveash, MD*	Tumors per case	Range, 2-9	Median, 3	Mean, 4.0		
	Case target volume (cc)	Range, 0.23-19.56	Median, 3.72	Mean, 4.93		
	Individual target volume (cc)	Range, 0.0027-15.01	Median, 0.14	Mean, 1.22		
28 patients with multiple metastases <u>previously treated on GK</u> Replanned using <u>single isocenter</u> , <u>single or multi arc VMAT (RapidArc)</u> Scored RTOG and Paddick conformity indices, V ₁₂ , V ₉ and V _{4.5} , beam- on and treatment times						

Plan Quality and Treatment Efficiency for Radiosurgery to Multiple Brain Metastases: Non-Coplanar RapidArc vs. Gamma Knife Haisong Liu', David W. Andrews ² , James J. Evans ² , Maria Werner-Wasik', Yan Yu', Adam Paul Dicker' and Wenyin Shi ^{1*} Frontiers in Oncology February 2016 Volume 6 Article 26						
6 patients with 3-4 metastases planned on both GK and single						
isocenter, multi arc VMA	[(RapidAr	<u>c)</u>				
Scored RTOG and Paddick conformity indices, V ₁₂ , and beam-on and treatment times						
	Gamma Knife RapidArc					
	Mean	Std.	Mean	Std.	р	
RTOG Index	1.50	0.16	1.19	0.14	<0.001	
V12 (patient composite)	10.85	7.2	9.7	5.1	0.63	
V6	36.9	16.9	36.3	14.7	0.96	
V4.5	86.7	29.8	99	27.3	0.15	
V3	160.8	55.7	224	53	0.1	
Beam-on time	71.6	15.9	6.4	0.8	<0.01	
Est. total tx time	85.9	19.1	19.3	2.6	< 0.01	

Plan Quality and Treatment Efficiency for Radiosurgery to Multiple Brain Metastases: Non-Coplanar RapidArc vs. Gamma Knife

Haisong Liu¹, David W. Andrews², James J. Evans², Maria Werner-Wasik¹, Yan Yu¹, Adam Paul Dicker¹ and Wenyin Shi^{1*} Frontiers in Oncoloor

Paul Dicker' and Wenyin Shi'* Frontiers in Oncology February 2016 | Volume 6 | Article 26

RapidArc Parameters

No. of arcs	Monitor units (MU)	Beam-on time (min)	Est. total tx time (min)
4	7000	5.0	15
6	8300	5.9	18
6	9600	6.9	21
5	10,130	7.2	22
5	8660	6.2	19
5	9750	7.0	21

Plan Quality and Treatment Efficiency for Radiosurgery to Multiple Brain Metastases: Non-Coplanar RapidArc vs. Gamma Knife

Haisong Liu¹, David W. Andrews², James J. Evans², Maria Werner-Wasik¹, Yan Yu¹, Adam Paul Dicker¹ and Wenyin Shi^{1*}

m Paul Dicker¹ and Wenyin Shi¹* Frontiers in Oncology February 2016 | Volume 6 | Article 26

Gamma Knife Parameters

Patient no.	No. of targets	Number of shots	Beam-on time (min)	Est. total tx time (min)
1	3	43	83.5	100
2	3	15	72.2	87
3	3	4	47	56
4	3	19	70	84
5	3	26	93	112
6	4	10	64	77

A Systematic Analysis of 2 Monoisocentric Techniques for the Treatment of Multiple Brain Metastases Ganesh Narayanasamy, PhD^{1,2}, Sotirios Stathakis, PhD¹, Alonso N. Gutierrez, PhD¹, Evangelos Pappas, PhD³, Richard Crownover, MD, PhD¹, John R. Floyd II, MD⁴, and Niko Papanikolaou, PhD¹ Technology in Cancer Research & Treatment 2016

8 patients with 3-7 metastases planned using the BrainLAB Multiple Metastases Element (MME) software and compared with a 4 arc RapidArc approach following the methodology of Thomas et al.

	MultiArc VMAT	MME
	Median (Range)	Median (Range)
Paddick Cl	0.67 (0.22 – 0.83)	0.67 (0.22 – 0.83)
Gradient Index	4.7 (3.5 – 5.9)	4.5 (2.6 – 6.0)
V12 (cc)	21.2 (10.6 – 33.5)	22.3 (9.0 – 33.1)
Mean Brain Dose (Gy)	2.8 (1.3 – 3.9)	2.5 (1.3 – 3.1)
MU	9655 ± 1533	7119 ± 1076

	Defining the Optimal Planning Target Volume in Image-Guided Stereotactic Radiosurgery of Brain Metastases: Results of a Randomized Trial
80 Lesions in 49 Patients Randomized to 1 or 3 mm margin 40 Lesions in Each Arm All Single Fraction on Novalis	John P. Kirkpatrick, MD, PhD, ** ¹ Zhiheng Wang, PhD, * John H. Sampson, MD, PhD, ** ¹ Frances McSherry, MA, [‡] James E. Herndon II, PhD, [‡] Karen J. Allen, ANP,* Eileen Duffy, RN, OCN, * Jenny K. Hoang, MBBS, [§] Zheng Chang, PhD,* David S. Yoo, MD, * Chris R. Kelsey, MD,* and Fang-Fang Yin, PhD,* Departments of *Radiation Oncology, ¹ Surgery, ¹ Biostatistics & Bioinformatics, [§] Radiology, Duke University, Darham, North Carolina Int J Radiation Oncol Biol Phys, Vol. 91, No. 1, pp. 100–108, 2015

	Lesion margin			
	1 mm		3 mm	
Characteristic		%	n	%
All	40	100.0	40	100.0
Maximum PTV diameter				
<2 cm	30	75.0	26	65.0
≥ 2 to <3 cm	8	20.0	10	25.0
\geq 3 to <4 cm	2	5.0	4	10.0
SRS prescription dose, Gy				
15	2	5.0	4	10.0
18	9	22.5	10	25.0
24 Tumor status after SRS	29	72.5	26	65.0
Local recurrence	2	5.0	1	2.5
Radionecrosis	1	2.5	5	12.5
No changes on imaging suggesting recurrence or radionecrosis	33	82.5	27	67.5
Insufficient information/unknown	4	10.0	7	17.5

